1. Collecting like terms:

Simplify the following expressions

a)
$$x^3 + 2x^2 - 5x + 7x^2 + 3x - 4$$
 b) $3x^2 + 6xy - 12x - 2xy + 6y^2 + 8y$

2. Indices

Evaluate (i.e. work out)

a)
$$2^{-3}$$
 b) $25^{\frac{1}{2}}$ c) $\left(\frac{1}{3}\right)^{-2}$ d) $49^{\frac{3}{2}}$

3. Fractions

Work out

a)
$$\frac{3}{4} + \frac{1}{3}$$
 b) $5\frac{1}{3} - 3\frac{1}{2}$ c) $2\frac{2}{3} \times \frac{1}{4}$ d) $5\frac{1}{3} \div 2\frac{1}{4}$

4. Laws of Indices

Simplify the following expressions

a)
$$\frac{2^5 \times 2^9}{(2^3)^5}$$
 b) $4x^3 \times 2x^5$ c) $(3a)^3$ g) $(-2p^2q^3)^4$ h) $\frac{2x^2y^3z \times 6x^4yz^3}{(9xy^4z^2)^2}$

5. Changing the subject of a formula

Make the variable shown in brackets the subject

a)
$$v = u + at$$
 (a) b) $s = \frac{1}{2}(u + v)t$ (v) c) $A = 2\pi r^2 + 2\pi rh$ (h)

6. Expanding brackets

Multiply out and simplify

a) 6(2x+3)b) $2xy^2(3x-5y)$ c) 5y(4-3x)-2x(3-2y)d) (x+7)(x-7)e) (2x+y)(2-3y)

7. Factorising expressions

Factorise fully

a)
$$7x + 21$$
 b) $3ab - 12b$ c) $7x^2y + 21x^3y^2$ d) $30xy + 6x^2 - 15x^2y^2$

8. Algebraic fractions

Simplify these fractions as far as possible

a)
$$\frac{8x+6}{2x-4}$$
 b) $\frac{3x^2+6x}{2x+4}$

Express as a single fraction

c)
$$3 + \frac{2}{x}$$
 d) $\frac{1}{x+1} + \frac{3}{x-3}$

9. Factorising quadratic expressions

Factorise

a)
$$x^{2} + 9x + 20$$

 $a^{2} - 6a - 16$
e) $2x^{2} + 3x + 1$
f) $x^{2} - 9$
g) $9x^{2} - 2y - 63$
g) $9x^{2} - 25y^{2}$

10. Solving quadratic equations

Solve the following equations

a)
$$x^{2} + 15x + 54 = 0$$

 $x + 1 = \frac{6}{x}$
b) $t^{2} - 3t - 40 = 0$
c) $7a - 6a^{2} + 20 = 0$
d)

11. Solving quadratic equations

Solve the following equations giving your answer in surd form

a)
$$x^2 + 12x + 20 = 0$$
 b) $2t^2 - 9t + 4 = 0$

12. Surds

Write the following in the form $a\sqrt{b}$

a)
$$\sqrt{44}$$
 b) $\sqrt{320}$ c) $\sqrt{75}$ d) $\sqrt{\frac{27}{16}}$

13. Surds

Write each of the following as a single surd in its simplest form

a)
$$4\sqrt{7} - 3\sqrt{7} + 6\sqrt{7}$$

b) $4\sqrt{2} - \sqrt{50} + \sqrt{98}$
c) $\sqrt{3}(7 + 2\sqrt{3})$
d) $(\sqrt{7} - \sqrt{3})(\sqrt{7} + \sqrt{3})$

14. Solving Simultaneous equations

Solve each of the following pairs of simultaneous equations

a)
$$2x + 3y = 10$$

 $5x + 2y = 3$
b) $8x + 4y = 5$
 $6x - 8y = 1$
c) $y = x^2 - x - 6$
 $y = x + 2$

15. Trigonometry

- a) The figure shows a cube of 10cm Calculate
- (i) the length AC
- (ii) the angle YAC.

b) In the triangle ABC AB = 7cm, AC = 5cm and the angle BAC = 35° . Calculate the length BC, giving your answer to 1d.p.

True or False?

1	All prime numbers are odd numbers	True	False
2	Every positive integer greater than 10 has an even number of factors	True	False
3	If $x^2 = x$, then x must be the number 1	True	False
4	If we add a given number to both the numerator and denominator of a fraction, then the new fraction is equivalent to the original fraction	True	False
5	If both the numerator and denominator of a fraction are squared, then the new fraction is equivalent to the original fraction	True	False
6	$a \times (b \times c) = (a \times b) \times c$	True	False
7	$a \div (b \div c) = (a \div b) \div c$	True	False
8	If a quadrilateral has exactly 2 lines of symmetry, then it must be a rectangle	True	False
9	Except for 1, no cube number is also a square number	True	False
10	x^2 is never equal to $5x + 14$	True	False
11	If m and n are positive integers, then 6m + 4n + 13 is odd	True	False
12	A polygon having all its sides equal is a regular polygon	True	False
13	If $a^2 = 7^2$ then a must equal 7	True	False

14	$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$		
		True	False
15	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$		
		True	False
16	a x (b + c) = ab + ac	True	False
17	a x (b x c) = ab x ac	True	False
18	$(a + b)^2 = a^2 + b^2$	True	False
19	$\sqrt{x+y} = \sqrt{x} + \sqrt{y}$	True	False
20	x ² is never less than x	True	False
21	(a + b) (c + d) = ac + bd	True	False
22	2 [×] is always positive	True	False
23	A triangle has sides 7 cm, 22 cm and 23 cm; it contains a right angle	True	False
24	There is exactly one point which lies on both of the straight lines	True	False
	$y = \frac{1}{2}x + 5$ and $x - 2y = 3$		
25	If the number x is increased by 8.3% and the result is then decreased by 8.3% then the final answer is x	True	False
26	If the product of two numbers is 8 one of the numbers must be 8	True	False
27	If the product of two numbers is 0 one of the numbers must be 0	True	False
28	A pyramid has 5 faces, 8 edges and 5 vertices	True	False
29	The number 133! (the number obtained by working out the product	True	False
	1 x 2 x 3 x 4 x 5x 132 x 133) ends in a zero		

30 (-6)² = 36