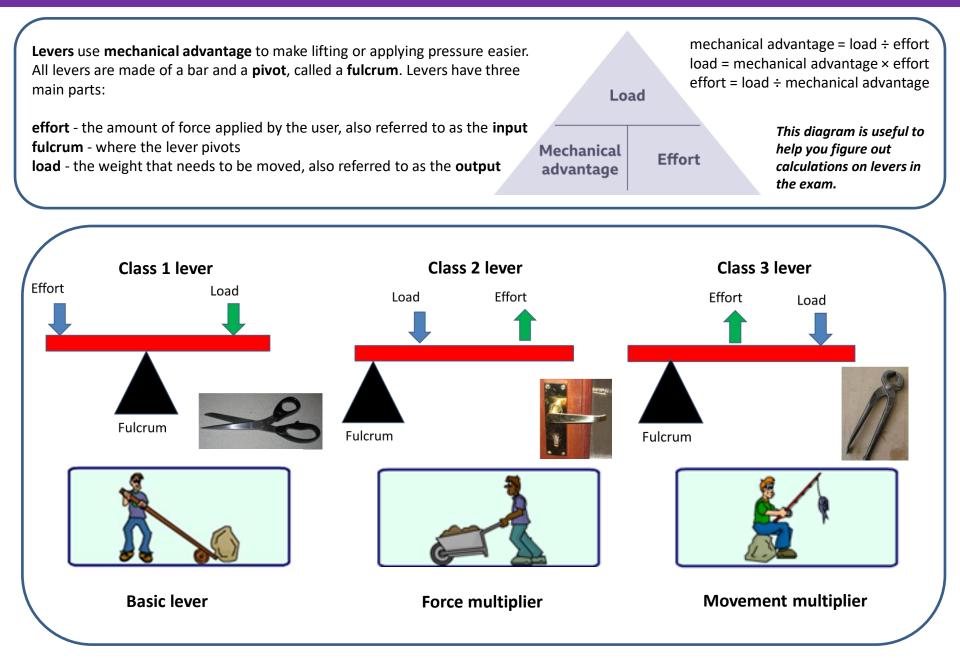
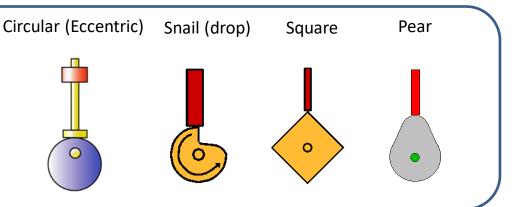

GCSE DT: Mechanical devices – Motion and Linkages

Type of movement	Direction of movement	Examples of movement	Linear speed = distance ÷ time A car travelled 20kmiles in 23 minutes. Calculate the linear speed.	
Linear = Moves in one direction		Pen (pushing), train, tram, car		
Oscillating = Swings in alternative directions		Clock pendulum Turning Key in a lock Door handle	Rotational speed = number of revolutions ÷ timeA bike wheel rotates 12 times in 5 seconds.	
Reciprocal = Moves backwards and forwards		Sewing machine needle. Inside a printer,	Calculate the rotational speed. Have you looked at BBC bitesize revision? It is a really useful website and can be	
Rotating = Turns in a circle		Clock hands, Wheels, Record/CD player, hand drill handle, bike pedals	downloaded as an app for free.	


Linkages.

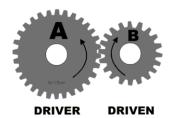
Linkages are mechanisms which allow force or motion to be directed where it is needed. They can be used to **change direction of motion**, type of motion and the size of a force.

GCSE DT: Mechanical devices – Levers



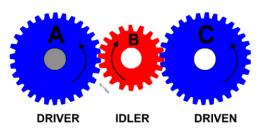
GCSE DT: Mechanical devices – CAMs and Gears

Cams

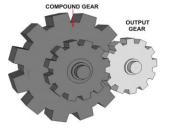

A CAM **changes** the input motion, which is usually **rotary motion**, to a **reciprocating motion** of the follower.

A cam mechanism has two parts: cam and follower

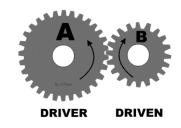
Gears


Gear systems transfer rotary motion. They are linked together in **gear trains** with the simplest form being a 2 gear wheel.

Spur gears


The input and output are different directions

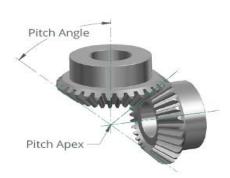
If one gear was larger than the other, the rotational speed would change.



Idler Gear

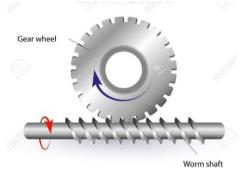
If both gears were required to turn in the same direction, **an idler** would be placed between the input and output.

Compound gears Can significantly increase or decrease the number of possible rotational speeds Gear ratio = number of teeth on driven gear ÷ number of teeth on the driver gear

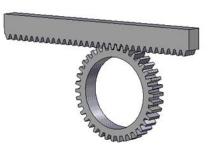


If a cyclist is pedalling with a drive gear of 50 teeth and a driven gear of 25 teeth, what is the gear ratio?

50 ÷ 25 = 1:2


GCSE DT: Mechanical devices – CAMs and Gears

Other types of gear


Bevel and mitre

Can have shafts at 90 degrees
Different sizes of gears can change the speeds

Worm Gear

- •Transmits force and motion through 90 degrees
- Reduction on rotational speed possible
- Used in food mixers

Rack and pinion

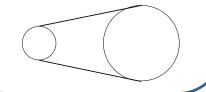
- Used to change rotary motion into linear
- •Used in pillar drills
- Used in steering mechanisms in cars

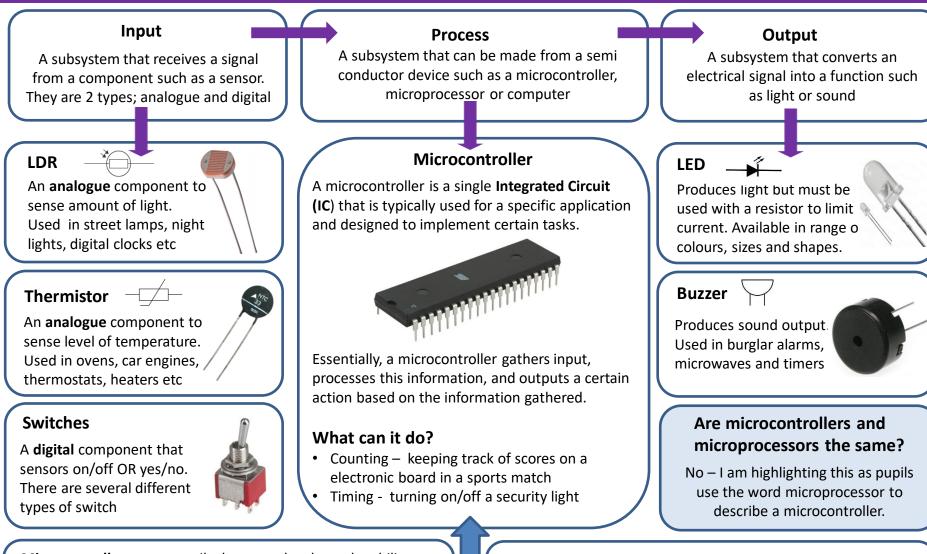

Velocity ratio = diameter of the driven pulley ÷ diameter of the driver pulley

Output speed = input speed ÷ velocity ratio

Calculate the velocity ratio <u>and</u> the output speed of the driven pulley on this lawnmower belt and pulley:

15 ÷ 150 = 0. 1


300 ÷ 0.1= 3,000 rpm


Belt drives

A pully and belt drive transfers rotary motion, like a gear system.

They can be used to change the speed, direction of rotation, or turning force or torque.

GCSE DT: Electronic devices

Microcontrollers are versatile because they have the ability to control numerous inputs and outputs simultaneously

Microcontrollers can run multiple programs simultaneously and include interrupts / override features

Microcontrollers are small in size and can reduce the number of components required therefore products can be miniaturised

Many **microcontroller**s run off low voltage supplies making them energy efficient and are also reusable

GCSE DT: Electronic devices

Flow chart programs

To program a microcontroller, you need a set of instructions which tells the microcontroller what to do.

A flow chart is a graphical way of showing program. It uses standard symbols that are shown in the table

How to programme a microcontroller

Stage 1: Compose a program Stage 2: Run / test the program to see if it works as required Stage 3: Download onto a microcontroller Stage 4: Run / test the system to see if it works editing program if needed Stage 5: Place microcontroller IC into control system and run

Feedback in control systems

Sometimes systems require 'feedback' which means the microcontroller receives information from a sensor and feeds it back into the input to gain 'precise control'.

For example, central heating. If a room is too cold, a sensor monitors the temperate and switches on the heating.

Start	Symbol	Name	Function	Subroutines	
Set count to zero Display COUNT One second time delay Add 1 to COUNT YES Count=60? NO 1 MINUTE TIMER		Start / End	An oval shape represents the start or end of a process	Subroutines (macros) can be used to simplify the structure of a complex programme. It is basically a small sub	
		Input / Output	A parallelogram represents input or output		
		Decision	A diamond represents a decision	program within a larger programme. By adding a 'RETURN'	
		Process	A rectangle represents a process	command at the ned of a subrouhntine , enables the task to be repeated.	
	\rightarrow	Arrow	An arrow is a connector that shows relationships between the different shapes and what they represent	https://www.bbc.co.uk/bit esize/guides/zh8ck2p/revis ion/1	